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The properties of hydrogen–helium mixtures at Mbar pressures
and intermediate temperatures (4000 to 10000 K) are calculated
with first-principles molecular dynamics simulations. We deter-
mine the equation of state as a function of density, temperature,
and composition and, using thermodynamic integration, we esti-
mate the Gibbs free energy of mixing, thereby determining the
temperature, at a given pressure, when helium becomes insoluble
in dense metallic hydrogen. These results are directly relevant to
models of the interior structure and evolution of Jovian planets.
We find that the temperatures for the demixing of helium and
hydrogen are sufficiently high to cross the planetary adiabat of
Saturn at pressures �5 Mbar; helium is partially miscible through-
out a significant portion of the interior of Saturn, and to a lesser
extent in Jupiter.

ab initio molecular dynamics � high pressure � planetary interiors

The two lightest elements, hydrogen and helium, are fascinat-
ing to physicists. Ubiquitous in the universe, their abundance

ratio provide stringent checks on cosmological nucleosynthesis
theories and the global distribution of hydrogen in the observ-
able universe provides clues to the origin and large scale
structures of galaxies. They are the essential elements of stars
and giant planets. Yet, despite the seeming simplicity of their
electronic structure, there are many unanswered questions about
their fundamental properties, especially at high pressures. One
such question is under what conditions are these elements
miscible. The answer will have a crucial impact on our under-
standing of the evolution and the structure of the giant planets
in our solar system and beyond.

Jupiter and Saturn, the simplest among the Jovian planets, are
generally believed to have been formed approximately at the
same time as the sun, although certain direct observations (such
as Saturn’s excess luminosity) appear to contradict this planetary
formation theory. In addition to being mostly made of hydrogen
and helium, a characteristic of Jovian planets is that they radiate
more energy than they take in from the sun. Various models of
their evolution and structure have been developed (1–4) to
describe a relation between the age, volume, and mass of the
planet and its luminosity. The current luminosity of Jupiter is
well described with an evolution model for a convective homo-
geneous planet radiating energy left over from its formation 4.55
billion years ago. However, a similar model seriously underes-
timates the current luminosity of Saturn (5). Hence, either
Saturn formed much later than Jupiter, or there is an additional
energy source playing a more important role in Saturn than in
Jupiter. In addition, the atmospheric abundance of helium in
both Jupiter and Saturn appears to be lower than the accepted
proto-solar values, more so in Saturn than in Jupiter (1).

Salpeter and Stevenson (6–9) proposed that helium conden-
sation could be responsible for both the excess luminosity in
Saturn and the helium depletion in the atmosphere of both
Jovian planets. Suppose there is a region in the planet’s interior
where helium is insoluble; helium droplets will form and the
denser helium will act as a source of energy, both through the

release of latent heat, and by descending deeper into the center
of the planet. Because Jupiter and Saturn have different total
masses, the thermodynamic conditions in the planetary interiors
could be such that this condensation process is more prevalent
in Saturn than in Jupiter.

Previous attempts to calculate the immiscible temperature, as
a function of pressure and helium concentration, by Stevenson
(7), Straus et al. (10), Hubbard et al. (11), Klepeis et al. (12), and
Pfaffenzeller et al. (13) led to inconsistent conclusions as to the
importance of phase separation in the interiors of Saturn and
Jupiter. The original theories of Stevenson, Hubbard, and De-
Witt were based on the assumption that the mixture consisted of
fully pressure-ionized hydrogen and helium. For the tempera-
tures and pressures found in Saturn and Jupiter, this assumption
is now known to be inaccurate, especially for helium (14, 15).
Klepeis et al. (12) and Pfaffenzeller et al. (13) developed mixture
models based on density functional theory (DFT). This opens up
the possibility of providing an accurate description of electron-
ion interactions without assumptions on the extent of ionization.
Klepeis et al. calculated the enthalpy of mixing at zero temper-
ature from the analysis of crystal structures with different
concentrations of helium. Using those enthalpies and the as-
sumption of ideal mixing for the entropy, they obtained a
demixing temperature of 15,000 K for xHe � 0.07, which suggests
that there should be a major phase separation in both Jupiter and
Saturn. However, this work neglected both the relaxation of the
ionic crystal after the introduction of helium, and disorder
characteristic of a fluid. Using first-principles molecular dynam-
ics (FPMD) simulations with the Car-Parrinello technique,
Pfaffenzeller et al. (13) developed a model including a realistic
f luid structure. They performed molecular dynamics (MD)
simulations of fluid pure hydrogen and estimated the free
energies of a mixture by a reweighting technique. They found a
negligible temperature effect on the mixing free energy up to
temperatures of 3,000 K and therefore disregarded thermal
effects in enthalpies of mixing and used the ideal mixing for the
entropy. They obtained immiscibility temperatures too low to
allow for differentiation in either Jupiter or Saturn.

In the present work, the temperature, pressure and composi-
tion dependence of the enthalpy in hydrogen–helium mixtures is
computed with FPMD simulations (see Methods) based on
DFT. DFT has become the method of choice in theoretical
studies at high pressures, producing sufficiently accurate results
for hydrogen and helium (16, 17). We neglect the zero point
energy of the ions, which has been shown to be small and will
have a negligible effect on the immiscibility temperature within
our precision (18). Using thermodynamic integration, we esti-
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mate the Helmholtz free energy of the mixture and determine
the demixing temperature as a function of pressure and com-
position, thereby avoiding many of the previous assumptions and
providing the most accurate prediction of the hydrogen–helium
immiscibility, to date. Fig. 1 summarizes the main findings of this
work. The isentropes for Jupiter and Saturn determined from
our DFT-based equation of state (EOS) are shown along with
the temperature of demixing. Overall, we find that the demixing
temperature is high enough to support the scenario where
helium is partially miscible over a significant fraction of the
interior of the Jovian planets, with the corresponding region in
Saturn being larger than in Jupiter.

Results and Discussion
We calculated the EOS of the hydrogen–helium system as a
function of composition in the temperature range 4,000 to 10,000
K and in the density range 0.3 to 2.7 g/cm3, by a series of FPMD
simulations in the NVT ensemble. We studied 12 different
compositions to obtain an accurate interpolation of the energy
and pressure. Using the EOS we calculated free energies by
integrating along isotherms and isochores. We used the follow-
ing multistep process to estimate the Gibbs free energy:

1. We computed the free energy of an effective model at the
‘‘reference point’’ (Tref � 10,000 K, rs � 1.25)* for all 12
compositions (see Methods section). At this point the struc-
ture of the liquid mixture can be reasonably well reproduced
by simple pair potentials between classical point particles.

2. Using Coupling Constant integration (CCI) (see Methods
section), we computed the free energy difference at the
reference point between the DFT model and the effective
model.

3. Integrating the EOS along constant temperature and con-
stant volume paths, we obtained the free energy difference
between the reference point and any other thermodynamic
point in the range investigated.

4. Finally, inverting the pressure-volume relations we obtained
the Gibbs free energy of mixing as a function of pressure,
temperature and composition.

Fig. 2 shows the Helmholtz free energy of mixing as a function
of helium number fraction (xHe) at the reference point and its
energetic and entropic contributions. Fig. 2 clearly shows, at
least at the reference point, that the ideal mixing assumption
to describe the entropy of mixing is very accurate for xHe � 0.2
but becomes less accurate for larger helium concentrations.
The reason for this behavior is that the local environment of
a proton in the low hydrogen concentration region is very
different from the one it experiences in the metallic state of the
pure system (see the discussion of pair correlations below).
However, the inert character of helium makes it insensitive to
change in the local environment in the low helium concentra-
tion region. In Fig. 2, we compare our results to the prediction
of Pfaffenzeller et al. (13) who neglected thermal effects in the
internal energy of mixing and used the ideal mixing law. The
neglect of thermal effects in the internal energy results in a too
large and negative mixing free energy. Although it is true that
the thermal effects are probably negligible at 3,000 K, at this
temperature the system is strongly immiscible so that the
reweighting procedure used in (13) to estimate those effects is
likely to be inaccurate.

In Fig. 3 we present the calculated Gibbs free energy of mixing
as a function of composition; in Fig. 3A several pressures are
shown at a temperature of 8,000 K, whereas in Fig. 3B, several
temperatures are shown at a pressure of 10 Mbar. Note that at
8,000 K, pressure has a small effect on the mixing free energy for
low helium concentrations. In particular, a minimum in the free
energy located at xHe � 0.1 is observed for all pressures
investigated; this implies a stable mixture at this concentration.
However, pressure has a strong effect at higher helium concen-
trations where, at a temperature of 8,000 K, an increase from 4
to 10 Mbar eliminates the second minimum in the free energy*rs is the Wigner–Seitz radius and defines the electronic density.
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Fig. 1. Schematic phase diagram of hydrogen–helium mixtures at 2 com-
positions in the relevant range. Immiscibility lines, solid lines; this work,
triangles (green, guide to the eye); Pfaffenzeller et al. (13), brown; Hubbard-
DeWitt (11), turquoise; the latter two are parameterized as in ref. 1. In all three
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sition xHe � 0.07, squares (red, guide to the eye); Saturn assuming a compo-
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corner is the molecular H2 dissociation region of the mixture (dashed violet)
from refs. 19 and K.C., S. Hamel, T. Ogitsu, F. Gygi, and E.S.; unpublished data.
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curve†. The common tangent construction is used to estimate the
demixing temperatures. For points where no minima at high
helium concentration is evident, we have assumed complete
immiscibility. From the free energy plots of Fig. 3 it is clear that
this assumption will have a negligible effect on the location of the
minimum at low helium concentration. As shown in of Fig. 3B,
temperature has a strong effect on the mixing free energy, and
hence, on immiscibility. An increase in temperature from 7,000
to 9,000 K (data not shown in the figure) is enough to change the
concentration of helium at the saturation point from 5% to 15%.

Fig. 4 shows the demixing temperature versus composition for
pressures ranging from 4 to 12 Mbar. Also shown are the results
from the previous DFT-based calculations (12, 13). As suggested
by the free energy curve in Fig. 3, pressure has only a moderate
effect on the immiscibility process. For a fixed helium fraction,
the demixing temperature changes by �500 K in a pressure range
of 8 Mbar for the relevant concentrations (5% to 10%).

Recent first-principles studies of pure helium have examined the
effect of temperature on band gap closure, suggesting that metallization
in helium can occur at much smaller pressures than expected (14). To
examine the nature of helium in the mixtures, we calculated the
electronic conductivity of pure helium, using the Kubo–Greenwood

approach within DFT‡ and obtained values well below 100 (��cm)�1,
even at the highest temperature and density reported here. Further-
more, in the recent work by Stixrude et al. (14), for � � 5.4 g/cm3 the
band gap is found to close at temperatures beyond 20,000 K, well above
our estimated demixing temperature. Metallization should enhance
helium solubility, but as clearly shown here, for the pressures relevant
to the modeling of Jovian planets, immiscibility occurs at temperatures
well below those required to produce ionization in helium (15); fully
ionized models are not appropriate for describing the pressure depen-
dence of the demixing temperature. At pressures much higher than
thoseexaminedhere,metallizationofheliumwillplayan important role
and should produce significant changes to the pressure dependence of
the immiscibility temperature.

The structure of hydrogen is strongly influenced by the helium
concentration. Although at low xHe hydrogen is in the mono-
atomic fully ionized state, an effective proton-proton attraction
reminiscent of the molecular bonding develops upon increasing
xHe, even at very high pressures and temperatures. Fig. 5 shows
several hydrogen-hydrogen radial distribution functions for mix-
tures with various helium concentrations, for temperatures of
8,000 K and 10,000 K and electronic densities given by rs � 1.05
and rs � 1.25 respectively. A molecular-like peak builds up
smoothly as xHe 3 1 . Under these conditions, helium is not
ionized; this inhibits the delocalization of the hydrogenic elec-
trons, enhancing the formation of weak molecular bonds. Be-
cause of the very low proton concentration, the observed
proton-proton correlation can be interpreted as resulting from
an effective Morse potential. Fitting �log(gpp(r))/T to this
analytic form yields well depth parameters �300 times smaller
than in an isolated hydrogen molecule. Such weak attraction
gives proton pairs with short lifetimes, as also inferred from
direct inspection of the MD trajectories. A similar stabilization
of molecular hydrogen by helium, but at much lower temperature
and density, has been reported close to the dissociation regime
in pure hydrogen (19).

The computed demixing temperatures found here have im-
portant implications for the study of the interior structure of
hydrogen rich planets, especially Saturn. Our results support the
scenario where helium becomes partially miscible in the inter-
mediate layers of the planet, with the excess helium falling
toward the core through gravitational differentiation. This
mechanism has been proposed to explain the high surface
temperatures observed in Saturn (2) and the depletion of helium

†We have concentrated the majority of our simulation efforts on the small xHe part of the
phase diagram more relevant to planetary models. Quantitative prediction of miscibility
at large xHe is more difficult because of the smaller mixing free energy involved and will
require additional investigations.

‡These calculations were performed on 15 de-correlated configurations from a FPMD
trajectory, where we employed a 6�6�6 Monkhorst-Pack k-point grid.
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Fig. 3. The Gibbs free energy of mixing as a function of composition. (A) Data
at 8,000 K for several pressures: 4 Mbar (red squares), 8 Mbar (green triangles),
10 Mbar (blue inverted triangles) and 12 Mbar (violet diamonds). (B) Data at
P � 10 Mbar for several temperatures: 5,000 K (red sqaures), 7,000 K (green
triangles), 8,000 K (blue triangles), and 10,000 K (violet inverted triangles).
Results of calculations are shown as symbols and error bars; solid lines are
guides to the eye only.
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in the atmosphere. Whether the immiscible region will be large
enough to explain all of the observed properties of the planet
remains an open question, but the current work represents a
clear indication that a correct description should include phase
separation. In general, DFT represents a large modification to
the existing interior models, based mostly on the Saumon,
Chabrier, Van Horn EOS (20) (SCVH). As recently shown by
Militzer et al. (21), a combination of the DFT EOS with the
inclusion of nonideal effects in the mixing leads to isentropic
Jupiter models that are cooler than the corresponding SCVH
ones by �1,000–2,000 K at high pressures. Even though the
results reported here suggest that the interior model cannot be
assumed to be isentropic, nonadiabatic models based on DFT
including nonideal effects should produce qualitatively similar
results to those found by Militzer. To give an indication of the
general changes expected with the proper inclusion of these
effects, we calculated the SCVH isentropes (corresponding to
the interpolated EOS) of Jupiter and Saturn, using our DFT-
based EOS. The results are shown in Fig. 1, where we have
assumed fixed helium concentrations of xHe � 0.07 for Jupiter
and xHe � 0.0667 for Saturn.

At low density (� � 0.3 g/cm3), before the dissociation of
hydrogen plays a significant role, the pressures produced by the
SCVH model are in good agreement with DFT. To compare the
entropy of both models at low density, and assess the agreement
of the isentropes there, we performed simulations with xHe �
0.0667 following a path through the region of miscibility starting
from the reference point and ending at a density of � � 0.3 g/cm3,
where we simulated several temperatures. Then, using thermo-
dynamic integration, we calculated the free energy and the
entropy at the point where the SCVH planetary isentrope crosses
this density. We obtain entropies that agree with the SCVH
model to within 1.5%. With the onset of dissociation for higher
densities, the isentrope from the SCVH model deviates signif-
icantly from DFT results. Although the possible immiscibility
puts in question the use of an isentropic model for the interior
of Saturn, our analysis provides an estimate of the magnitude of
changes to the SCVH based models. The present results are in

good agreement with those reported by Militzer (21) for the
Jupiter isentrope. As can be seen, the portion of the interior of
Saturn corresponding to pressures between 1.5 to 5.5 Mbar
should be inside the immiscible region, with the stable concen-
tration of helium depending on pressure.

Conclusion
In summary, we have carried out an extensive investigation of the
properties of hydrogen–helium mixtures at pressures and tem-
peratures that are relevant to the interior of Jupiter and Saturn,
using state-of-the-art ab initio simulation methods. By using a
combination of first-principles molecular dynamics simulations
within DFT and thermodynamic integration techniques, we have
accurately determined the Gibbs free energy of mixing over a
wide range of density, temperature and composition. Our work
differs from previous investigations in that it does not rely on any
assumptions about mixing functions. Our simulation results are
consistent with the idea that a large portion of the interior of
Saturn has conditions such that hydrogen and helium phase
separate; this can account for the apparent discrepancy between
the current evolution models for Saturn and observational data.

The accuracy of the present results is primarily limited by the
approximate density functional used. Quantum Monte Carlo
calculations for helium and hydrogen do not require assumptions
about the electron correlation, pseudopotentials and zero-point
energy of the nuclei. A systematic investigation of the correction
to DFT, using the Quantum Monte Carlo method described in
ref. 17 is in progress.

Methods
First Principles Calculations. The FPMD simulations performed in this work
were based on Kohn-Sham density functional theory, using the Perdew–
Burke–Ernzerhof (PBE) exchange-correlation functional. We used Born-
Oppenheimer MD (BOMD) within the NVT-ensemble (with a weakly coupled
Berendsen thermostat), as implemented in the Qbox code (http://eslab.uc-
davis.edu/software/qbox). We used a Hamman type (22) local pseudopotential
with a core radius of rc � 0.3 au to represent hydrogen and a Troullier–Martins
type (23) nonlocal pseudopotential with s and p channels and rc � 1.091 au to
represent helium. Tests have established the accuracy of the hydrogen and
helium pseudopotentials over the relevant pressure range, up to 13 Mbar§. A
plane wave energy cutoff of 90 Ry was used for rs � 1.10 and of 115 Ry for rs

� 1.10. Empty states were included with an electronic temperature set to the
ionic temperature. To integrate the equation of motion during the dynamics
we used a time step of 8 a.u.

We used 250 electrons for rs � 1.65 and 128 electrons otherwise. The
Brillouin zone was sampled at the �-point. To reduce systematic effects and to
get accurate pressures, we added a correction to the EOS designed to correct
for the plane wave cutoff and the sampling of the Brillouin zone. To compute
this, we studied 15–20 configurations at each density and composition by
using a 4 � 4 � 4 grid of k-points with a plane-wave cutoff of at least 300 Ry.
The actual plane-wave cutoff used depended on density and was chosen to
achieve full convergence in the energy and pressure.

For the calculation of the EOS, we studied 4 temperatures, 6 densities and
12 compositions for a total of 288 simulations. We also performed 15 simu-
lations to extend the calculation of the free energy to low density. For the
integration of the free energy we studied 8 compositions, each one required
5 additional calculations. In the case of the BOMD simulations, we first
equilibrated the system, using a suitable effective model and subsequently
allowed 300–500 time steps of equilibration with DFT, averages were accu-
mulated for �2,000 time steps. For the thermodynamic integration, the
simulations were first equilibrated with the effective potential and subse-
quently allowed to equilibrate for 1,000–2,000 time steps, using the mixed
DFT-effective potential, averages were calculated for 12,000–18,000 time
steps. In both cases, this was sufficient for accurate results. In total, the

§The sensitivity of the free energy to the choice of the helium pseudopotential was
estimated by comparing the enthalpy of 20 ionic configurations with a Hamman type local
pseudopotential with rc�0.218 au for helium and a plane wave cutoff of 450 Ryd. The
difference in the free energy of mixing is estimated to be 0.1 mH/atom, this is smaller than
the error bars reported in Fig. 3.
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simulations reported here used approximately 3 million CPU hours on a large
Opteron-based Linux cluster.

Coupling Constant Integration. CCI allows us to calculate the difference in free
energy between systems with different interacting potentials. For a system
described by the potentials V1 and V2:

V	�
 � �V1 � 	1 � �
V2 [1]

F1	T, V, N
 � F2	T, V, N
 � �
0

1 dF	�


d�
d�

� �
0

1

�V1 � V2�T,V,N,� d�, [2]

where ��T,V,N,� represents a canonical average with the potential V(�). Any
functional form of the two potentials is formally allowed in Eq. 1, but the use
of similar potentials makes the integration of the free energy difference
considerably easier in practice.

To represent the interaction between the atoms in the classical system, we
used reflected Yukawa pair potentials:

V	r
 � �a�e�br

r
�

e�b	L�r


	L � r

� 4

e�bL�2

L � r � L�2,

0 r � L�2,
[3]

where a, b, and L are free parameters and depend on the identity of the
atoms¶. As shown in Fig. 6, this potential was found to exhibit similar pair

correlations as the DFT model for pure hydrogen, but was not as good for
helium. We choose the pair potentials such that the effective model was fully
miscible at the reference point to avoid crossing a phase line during the
integration. We computed the Helmholtz free energy of the effective model,
using CCI and classical MC simulations, with the second potential set to zero
in Eq. 1. From this we determined the free energy of the effective model
because the free energy of the noninteracting model is known. We also
calculated the free energy by integrating the pressure from the reference
volume to a volume large enough that the system is ideal; the pressures were
obtained by a series of classical MC simulations. Both approaches produced
agreement within noise.

The free energy difference between the DFT-based and the effective
models was calculated using the CCI approach. Fig. 6 shows a comparison of
the radial distribution functions of the effective and DFT models for selected
compositions at the reference point. To compute the required canonical
averages, we used a Hybrid Monte Carlo (HMC) algorithm (24), which allows
for an efficient sampling of large systems with many-particle moves. HMC
results in exact sampling of the canonical ensemble without time step errors.
In this work, the HMC approach was found to be as efficient as MD if the time
step is chosen carefully. Fig. 7 shows the results of the HMC simulations for
several compositions. The curves are smooth. This is the only requirement to
justify the procedure. Fig. 2 summarizes the main results of the computations
at the reference point.
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effective (blue) and the DFT (red) system at the reference point. We choose
Yukawa pair potentials to calculate the Helmholtz free energy at the refer-
ence point.
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Fig. 7. Results of the simulations for the mixed effective-DFT potential used
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